FlexBoard: A Flexible Breadboard for Interaction Prototyping on Curved and Deformable Surfaces(CHI 2023)

Donghyeon Ko, Yoonji Kim, Junyi Zhu, Michael Wessely, Stefanie Mueller

Abstract

We present FlexBoard, an interaction prototyping platform that enables rapid prototyping with interactive components such as sensors, actuators and displays on curved and deformable objects. FlexBoard offers the rapid prototyping capabilities of traditional breadboards but is also flexible to conform to different shapes and materials. FlexBoard’s bendability is enabled by replacing the rigid body of a breadboard with a flexible living hinge that holds the metal strips from a traditional breadboard while maintaining the standard pin spacing. In addition, FlexBoards are also shape-customizable as they can be cut to a specific length and joined together to form larger prototyping areas. We discuss FlexBoard’s mechanical design and present a technical evaluation of its bendability, adhesion to curved and deformable surfaces, and holding force of electronic components. Finally, we show the usefulness of FlexBoard through 3 application scenarios with interactive textiles, curved tangible user interfaces, and VR.